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Abstract

This paper presents an unsupervised learn-
ing algorithm for sense disambiguation
that, when trained on unannotated English
text, rivals the performance of supervised
techniques that require time-consuming
hand annotations. The algorithm is based
on two powerful constraints — that words
tend to have one sense per discourse and
one sense per collocation — exploited in an
iterative bootstrapping procedure. Tested
accuracy exceeds 96%.

1 Introduction

This paper presents an unsupervised algorithm that
can accurately disambiguate word senses in a large,
completely untagged corpus.! The algorithm avoids
the need for costly hand-tagged training data by ex-
ploiting two powerful properties of human language:

1. One sense per collocation:? Nearby words
provide strong and consistent clues to the sense
of a target word, conditional on relative dis-
tance, order and syntactic relationship.

2. One sense per discourse: The sense of a tar-
get word is highly consistent within any given
document.

Moreover, language 1s highly redundant, so that
the sense of a word is effectively overdetermined by
(1) and (2) above. The algorithm uses these prop-
erties to incrementally identify collocations for tar-
get senses of a word, given a few seed collocations

!Note that the problem here is sense disambiguation:
assigning each instance of a word to established sense
definitions (such as in a dictionary). This differs from
sense induction: using distributional similarity to parti-
tion word instances into clusters that may have no rela-
tion to standard sense partitions.

2Here I use the traditional dictionary definition of
collocation — “appearing in the same location; a juxta-
position of words”. No idiomatic or non-compositional
interpretation is implied.

for each sense. This procedure is robust and self-
correcting, and exhibits many strengths of super-
vised approaches, including sensitivity to word-order
information lost in earlier unsupervised algorithms.

2 One Sense Per Discourse

The observation that words strongly tend to exhibit
only one sense in a given discourse or document was
stated and quantified in Gale, Church and Yarowsky
(1992). Yet to date, the full power of this property
has not been exploited for sense disambiguation.
The work reported here is the first to take advan-
tage of this regularity in conjunction with separate
models of local context for each word. Importantly,
I do not use one-sense-per-discourse as a hard con-
straint; it affects the classification probabilistically
and can be overridden when local evidence is strong.
In this current work, the one-sense-per-discourse
hypothesis was tested on a set of 37,232 examples
(hand-tagged over a period of 3 years), the same
data studied in the disambiguation experiments. For
these words, the table below measures the claim’s
accuracy (when the word occurs more than once in
a discourse, how often it takes on the majority sense
for the discourse) and applicability (how often the
word does occur more than once in a discourse).

The one-sense-per-discourse hypothesis:

Word Senses Accuracy | Applicblty
plant living /Tactory 99.8 % 72.8 %
tank vehicle/contnr 99.6 % 50.5 %
poach | steal/boil 100.0 % 44.4 %
palm tree/hand 99.8 % 38.5 %
axes grid/tools 100.0 % 35.5 %
sake benefit/drink 100.0 % 33.7 %
bass fish /music 100.0 % 58.8 %
space volume/outer 99.2 % 67.7 %
motion | legal/physical 99.9 % 49.8 %
crane | bird/machine 100.0 % 49.1 %
Average 99.8 % | 50.1 %

Clearly, the claim holds with very high reliability
for these words, and may be confidently exploited



as another source of evidence in sense tagging.®

3 One Sense Per Collocation

The strong tendency for words to exhibit only one
sense 1n a given collocation was observed and quan-
tified in (Yarowsky, 1993). This effect varies de-
pending on the type of collocation. It is strongest
for immediately adjacent collocations, and weakens
with distance. It is much stronger for words in a
predicate-argument relationship than for arbitrary
assoclations at equivalent distance. It is very much
stronger for collocations with content words than
those with function words.* In general, the high reli-
ability of this behavior (in excess of 97% for adjacent
content words, for example) makes it an extremely
useful property for sense disambiguation.

A supervised algorithm based on this property is
given in (Yarowsky, 1994). Using a decision list
control structure based on (Rivest, 1987), this al-
gorithm integrates a wide diversity of potential ev-
idence sources (lemmas, inflected forms, parts of
speech and arbitrary word classes) in a wide di-
versity of positional relationships (including local
and distant collocations, trigram sequences, and
predicate-argument association). The training pro-
cedure computes the word-sense probability distri-
butions for all such collocations, and orders them by

. . . Pr(Sensea|Collocation;)\ 5
the log-likelihood ratio Log( Pr(Senses|Collocation’) ),

with optional steps for interpolation and pruning.
New data are classified by using the single most
predictive piece of disambiguating evidence that ap-
pears in the target context. By not combining prob-
abilities, this decision-list approach avoids the prob-
lematic complex modeling of statistical dependencies

Tt is interesting to speculate on the reasons for this
phenomenon. Most of the tendency is statistical: two
distinct arbitrary terms of moderate corpus frequency
are quite unlikely to co-occur in the same discourse
whether they are homographs or not. This is particu-
larly true for content words, which exhibit a “bursty”
distribution. However, it appears that human writers
also have some active tendency to avoid mixing senses
within a discourse. In a small study, homograph pairs
were observed to co-occur roughly 5 times less often than
arbitrary word pairs of comparable frequency. Regard-
less of origin, this phenomenon is strong enough to be
of significant practical use as an additional probabilistic
disambiguation constraint.

*This latter effect is actually a continuous function
conditional on the burstiness of the word (the tendency
of a word to deviate from a constant Poisson distribution
in a corpus).

®As most ratios involve a 0 for some observed value,
smoothing is crucial. The process employed here is sen-
sitive to variables including the type of collocation (ad-
jacent bigrams or wider context), collocational distance,
type of word (content word vs. function word) and the
expected amount of noise in the training data. Details
are provided in (Yarowsky, to appear).

encountered in other frameworks. The algorithm is
especially well suited for utilizing a large set of highly
non-independent evidence such as found here. In
general, the decision-list algorithm is well suited for
the task of sense disambiguation and will be used as
a component of the unsupervised algorithm below.

4 Unsupervised Learning Algorithm

Words not only tend to occur in collocations that
reliably indicate their sense, they tend to occur in
multiple such collocations. This provides a mecha-
nism for bootstrapping a sense tagger. If one begins
with a small set of seed examples representative of
two senses of a word, one can incrementally aug-
ment these seed examples with additional examples
of each sense, using a combination of the one-sense-
per-collocation and one-sense-per-discourse tenden-
cies.

Although several algorithms can accomplish sim-
ilar ends,® the following approach has the advan-
tages of simplicity and the ability to build on an
existing supervised classification algorithm without
modification.” As shown empirically, it also exhibits
considerable effectiveness.

The algorithm will be illustrated by the disam-
biguation of 7538 instances of the polysemous word
plant in a previously untagged corpus.

STEP 1:

In alarge corpus, identify all examples of the given
polysemous word, storing their contexts as lines in
an 1nitially untagged training set. For example:

Sense Training Examples (Keyword in Context)
.. company sald the plant is still operating
Although thousands of plant and animal species
.. zonal distribution of plant life . ...
.. to strain microscopic plant life from the ...
vinyl chloride monomer plant , which is ...
and Golgl apparatus of plant and animal cells
.. computer disk drive plant located in ...
... divide life into plant and animal kingdom
.. close-up studies of plant life and natural
... Nissan car and truck plantin Japan is ...
... keep a manufacturing plant profitable without
.. molecules found in plant and animal tissue
.. union responses to plant closures . ...
. animal rather than plant tissues can be
.. many dangers to plant and animal life
company manufacturing plantis in Orlando ...
... growth of aquatic plant life in water ...
automated manufacturing plant in Fremont |
... Animal and plant life are delicately
discovered at a St. Louis plant manufacturing
computer manufacturing plant and adjacent ...
.. the proliferation of plant and animal life
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®Including variants of the EM algorithm (Baum,
1972; Dempster et al., 1977), especially as applied in
Gale, Church and Yarowsky (1994).

"Indeed, any supervised classification algorithm that
returns probabilities with its classifications may poten-
tially be used here. These include Bayesian classifiers
(Mosteller and Wallace, 1964) and some implementa-
tions of neural nets, but not Brill rules (Brill, 1993).



STEP 2:

For each possible sense of the word, identify a rel-
atively small number of training examples represen-
tative of that sense.® This could be accomplished
by hand tagging a subset of the training sentences.
However, I avoid this laborious procedure by iden-
tifying a small number of seed collocations repre-
sentative of each sense and then tagging all train-
ing examples containing the seed collocates with the
seed’s sense label. The remainder of the examples
(typically 85-98%) constitute an untagged residual.

Several strategies for identifying seeds that require
minimal or no human participation are discussed in
Section b.

In the example below, the words life and manufac-
turing are used as seed collocations for the two major
senses of plant (labeled A and B respectively). This
partitions the training set into 82 examples of living
plants (1%), 106 examples of manufacturing plants
(1%), and 7350 residual examples (98%).

Sense Training Examples (Keyword in Context)
A used to strain microscopic plant life from the ...
A . zonal distribution of plant life . ...

close-up studies of plant life and natural ...
too rapid growth of aquatic plant life in water ...
. the proliferation of plant and animal life ...
establishment phase of the plant virus life cycle ...
. that divide life into plant and animal kingdom
. many dangers to plant and animal life ...
mammals . Animal and plant life are delicately
beds too salty to support plant life . River ...
heavy seas, damage , and plant life growing on ...
. vinyl chloride monomer plant , which is ...
. molecules found in plant and animal tissue
... Nissan car and truck plantin Japan is ...
. and Golgl apparatus of plant and animal cells ...
. union responses to plant closures . ...

. cell types found in the plant kingdom are ...
. company sald the plant is still operating ...
... Although thousands of plant and animal species
. animal rather than plant tissues can be ...
. computer disk drive plant located in ...

automated manufacturing plant in Fremont ...
. vast manufacturing plant and distribution ...
chemical manufacturing plant , producing viscose
... keep a manufacturing plant profitable without
computer manufacturing plant and adjacent ...
discovered at a St. Louis plant manufacturing
. copper manufacturing plant found that they
copper wire manufacturing plant , for example ...
’s cement manufacturing plant in Alpena ...
polystyrene manufacturing plant at its Dow ...
company manufacturing plant is in Orlando ...
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t 18 useful to visualize the process of seed de-
velopment graphically. The following figure illus-
trates this sample initial state. Circled regions are
the training examples that contain either an A or B
seed collocate. The bulk of the sample points “7”
constitute the untagged residual.

8For the purposes of exposition, I will assume a binary
sense partition. It is straightforward to extend this to &
senses using k sets of seeds.
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Figure 1: Sample Initial State

A = SENSE-A training example
B = SENSE-B training example
? = currently unclassified training example

fe | = Set of training examples containing the
collocation “life”.

STEP 3a:

Train the supervised classification algorithm on
the SENSE-A/SENSE-B seed sets. The decision-list al-
gorithm used here (Yarowsky, 1994) identifies other
collocations that reliably partition the seed training
data, ranked by the purity of the distribution. Be-
low is an abbreviated example of the decision list
trained on the plant seed data.’

Initial decision list for plant (abbreviated)

LogL | Collocation Sense
8.10 | plant life = A
7.58 | manufacturing plant =B
7.39 | life (within +2-10 words) = A

7.20 | manufacturing (in +2-10 words) = B

6.27 | animal (within +2-10 words) = A
4.70 | equipment (within £2-10 words) = B
4.39 | employee (within £2-10 words) = B
4.30 | assembly plant = B
4.10 | plant closure = B
3.52 | plant species = A
3.48 | automate (within +£2-10 words) = B
3.45 | microscopic plant = A

®Note that a given collocate such as life may appear
multiple times in the list in different collocational re-
lationships, including left-adjacent, right-adjacent, co-
occurrence at other positions in a +k-word window and
various other syntactic associations. Different positions
often yield substantially different likelihood ratios and in
cases such as pesticide plant vs. plant pesticide indicate
entirely different classifications.



STEP 3b:

Apply the resulting classifier to the entire sam-
ple set. Take those members in the residual that
are tagged as SENSE-A or SENSE-B with proba-
bility above a certain threshold, and add those
examples to the growing seed sets. Using the
decision-list algorithm, these additions will contain
newly-learned collocations that are reliably indica-
tive of the previously-trained seed sets. The acquisi-
tion of additional partitioning collocations from co-
occurrence with previously-identified ones is illus-
trated in the lower portion of Figure 2.

STEP 3c:

Optionally, the one-sense-per-discourse constraint
is then used both to filter and augment this addition.
The details of this process are discussed in Section 7.
In brief, if several instances of the polysemous word
in a discourse have already been assigned SENSE-A,
this sense tag may be extended to all examples in
the discourse, conditional on the relative numbers
and the probabilities associated with the tagged ex-
amples.

Labeling previously untagged contexts
using the one-sense-per-discourse property

Change| Disc.

in tag |Numb. Training Examples (from same discourse)
A — Af 724 . the existence of plant and animal life ...
A — A| 724 . clagsified as either plant or animal ...

? — A| 724 |Although bacterial and plant cells are enclosed
A — A 348 . the life of the plant , producing stem
A — A| 348 . an aspect of plant life | for example
7 — A| 348 . tissues ; because plant egg cells have

7?7 — A| 348 | photosynthesis, and so plant growth is attuned

This augmentation of the training data can often
form a bridge to new collocations that may not oth-
erwise co-occur in the same nearby context with pre-
viously identified collocations. Such a bridge to the
SENSE-A collocate “cell” is illustrated graphically in
the upper half of Figure 2.

Similarly, the one-sense-per-discourse constraint
may also be used to correct erroneously labeled ex-
amples. For example:

Error Correction using the one-sense-per-discourse property

Change| Disc.
in tag [Numb.| Training Examples (from same discourse)
A — A| 525 contains a varied plant and animal life
A — A| 525 the most common plant life | the ...
A — A| 525 |slight within Arctic plant species ...
B — A| 525 are protected by plant parts remaining from
STEP 3d:

Repeat Step 3 iteratively. The training sets (e.g.
SENSE-A seeds plus newly added examples) will tend
to grow, while the residual will tend to shrink. Addi-
tional details aimed at correcting and avoiding mis-
classifications will be discussed in Section 6.
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Figure 2: Sample Intermediate State

(following Steps 3b and 3c¢)

STEP 4:

Stop. When the training parameters are held con-
stant, the algorithm will converge on a stable resid-
ual set.

Note that most training examples will exhibit mul-
tiple collocations indicative of the same sense (as il-
lustrated in Figure 3). The decision list algorithm
resolves any conflicts by using only the single most
reliable piece of evidence, not a combination of all
matching collocations. This circumvents many of
the problems associated with non-independent evi-
dence sources.

Figure 3: Sample Final State



STEP 5:

The classification procedure learned from the final
supervised training step may now be applied to new
data, and used to annotate the original untagged
corpus with sense tags and probabilities.

An abbreviated sample of the final decision list
for plant is given below. Note that the original seed
words are no longer at the top of the list. They have
been displaced by more broadly applicable colloca-
tions that better partition the newly learned classes.
In cases where there are multiple seeds, it is even
possible for an original seed for SENSE-A to become
an indicator for SENSE-B if the collocate is more com-
patible with this second class. Thus the noise intro-
duced by a few irrelevant or misleading seed words
i1s not fatal. It may be corrected if the majority of
the seeds forms a coherent collocation space.

Final decision list for plant (abbreviated)

LogL | Collocation Sense

10.12 | plant growth = A
9.68 | car (within +k words) =B
9.64 | plant height = A
9.61 | union (within £k words) =B
9.54 | equipment (within +k words) = B
9.51 | assembly plant = B
9.50 | nuclear plant =B
9.31 | flower (within +4 words) = A
9.24 | job (within £k words) =B
9.03 | fruit (within +k words) = A
9.02 | plant species = A

When this decision list 1s applied to a new test sen-
tence,

... the loss of animal and plant species through

extinction ... ,

the highest ranking collocation found in the target
context (species) is used to classify the example as
SENSE-A (a living plant). If available, information
from other occurrences of “plant” in the discourse
may override this classification, as described in Sec-
tion 7.

5 Options for Training Seeds

The algorithm should begin with seed words that
accurately and productively distinguish the possible
senses. Such seed words can be selected by any of
the following strategies:

e Use words in dictionary definitions
Extract seed words from a dictionary’s entry for
the target sense. This can be done automati-
cally, using words that occur with significantly
greater frequency in the entry relative to the
entire dictionary. Words in the entry appearing
in the most reliable collocational relationships
with the target word are given the most weight,
based on the criteria given in Yarowsky (1993).

e Use a single defining collocate for each
class

Remarkably good performance may be achieved
by identifying a single defining collocate for each
class (e.g. bird and machine for the word crane),
and using for seeds only those contexts contain-
ing one of these words. WordNet (Miller, 1990)
i1s an automatic source for such defining terms.

e Label salient corpus collocates

Words that co-occur with the target word in
unusually great frequency, especially in certain
collocational relationships, will tend to be reli-
able indicators of one of the target word’s senses
(e.g. flock and bulldozerfor “crane”). A human
judge must decide which one, but this can be
done very quickly (typically under 2 minutes for
a full list of 30-60 such words). Co-occurrence
analysis selects collocates that span the space
with minimal overlap, optimizing the efforts of
the human assistant. While not fully automatic,
this approach yields rich and highly reliable seed
sets with minimal work.

6 Escaping from Initial
Misclassifications

Unlike many previous bootstrapping approaches, the
present algorithm can escape from initial misclassi-
fication. Examples added to the the growing seed
sets remain there only as long as the probability of
the classification stays above the threshold. If their
classification begins to waver because new examples
have discredited the crucial collocate, they are re-
turned to the residual and may later be classified dif-
ferently. Thus contexts that are added to the wrong
seed set because of a misleading word in a dictionary
definition may be (and typically are) correctly re-
classified as iterative training proceeds. The redun-
dancy of language with respect to collocation makes
the process primarily self-correcting. However, cer-
tain strong collocates may become entrenched as in-
dicators for the wrong class. We discourage such be-
havior in the training algorithm by two techniques:
1) incrementally increasing the width of the context
window after intermediate convergence (which peri-
odically adds new feature values to shake up the sys-
tem) and 2) randomly perturbing the class-inclusion
threshold, similar to simulated annealing.

7 Using the One-sense-per-discourse
Property

The algorithm performs well using only local col-
locational information, treating each token of the
target word independently. However, accuracy can
be improved by also exploiting the fact that all oc-
currences of a word in the discourse are likely to
exhibit the same sense. This property may be uti-
lized in two places, either once at the end of Step
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% Seed Training Options || (7) + OSPD

Samp. | Major | Supvsd Two Dict. | Top End | Each Schutze
Word Senses Size | Sense | Algrtm || Words | Defn. | Colls. || only | Iter. || Algrthm
plant living/factory 7538 | 53.1 97.7 97.1 97.3 97.6 98.3 | 98.6 92
space volume/outer 9745 | 50.7 93.9 89.1 92.3 93.5 || 93.3 | 93.6 90
tank vehicle/container 11420 | 58.2 97.1 94.2 94.6 95.8 || 96.1 | 96.5 95
motion | legal/physical 11968 | 57.5 98.0 93.5 97.4 97.4 97.8 | 97.9 92
bass fish/music 1859 | 56.1 97.8 96.6 97.2 | 97.7 || 98.5 | 98.8 -
palm tree/hand 1572 | 74.9 96.5 93.9 94.7 | 958 || 95.5 | 95.9 -
poach | steal/boil 585 | 84.6 97.1 96.6 97.2 97.7 || 98.4 | 98.5 -
axes grid/tools 1344 | 718 95.5 94.0 94.3 94.7 || 96.8 | 97.0 -
duty tax/obligation 1280 | 50.0 93.7 90.4 92.1 93.2 93.9 | 94.1 -
drug medicine/narcotic 1380 | 50.0 93.0 90.4 914 | 926 || 93.3 | 93.9 -
sake benefit/drink 407 | 82.8 96.3 59.6 95.8 | 96.1 || 96.1 | 97.5 -
crane bird/machine 2145 | 78.0 96.6 92.3 93.6 94.2 || 95.4 | 955 -
AVG 3936 | 63.9 96.1 90.6 94.8 | 955 || 96.1 | 96.5 92.2

4 after the algorithm has converged, or in Step 3¢
after each iteration.

At the end of Step 4, this property is used for
error correction. When a polysemous word such as
plant occurs multiple times in a discourse, tokens
that were tagged by the algorithm with low con-
fidence using local collocation information may be
overridden by the dominant tag for the discourse.
The probability differentials necessary for such a re-
classification were determined empirically in an early
pilot study. The variables in this decision are the to-
tal number of occurrences of plant in the discourse
(n), the number of occurrences assigned to the ma-
jority and minor senses for the discourse, and the
cumulative scores for both (a sum of log-likelihood
ratios). If cumulative evidence for the majority sense
exceeds that of the minority by a threshold (condi-
tional on n), the minority cases are relabeled. The
case n = 2 does not admit much reclassification be-
cause 1t 1s unclear which sense 1s dominant. But for
n > 4, all but the most confident local classifications
tend to be overridden by the dominant tag, because
of the overwhelming strength of the one-sense-per-
discourse tendency.

The use of this property after each iteration is
similar to the final post-hoc application, but helps
prevent initially mistagged collocates from gaining a
foothold. The major difference is that in discourses
where there is substantial disagreement concerning
which 1s the dominant sense, all instances in the
discourse are returned to the residual rather than
merely leaving their current tags unchanged. This
helps improve the purity of the training data.

The fundamental limitation of this property 1is
coverage. As noted in Section 2, half of the exam-
ples occur in a discourse where there are no other
instances of the same word to provide corroborating
evidence for a sense or to protect against misclas-
sification. There is additional hope for these cases,

however, as such isolated tokens tend to strongly fa-
vor a particular sense (the less “bursty” one). We
have yet to use this additional information.

8 Evaluation

The words used in this evaluation were randomly
selected from those previously studied in the litera-
ture. They include words where sense differences are
realized as differences in French translation (drug
— drogue/médicament, and duty — devoir/droit),
a verb (poach) and words used in Schiitze’s 1992
disambiguation experiments (tank, space, motion,
plant).t?

The data were extracted from a 460 million word
corpus containing news articles, scientific abstracts,
spoken transcripts, and novels, and almost certainly
constitute the largest training/testing sets used in
the sense-disambiguation literature.

Columns 6-8 illustrate differences in seed training
options. Using only two words as seeds does surpris-
ingly well (90.6 %). This approach is least success-
ful for senses with a complex concept space, which
cannot be adequately represented by single words.
Using the salient words of a dictionary definition as
seeds increases the coverage of the concept space, im-
proving accuracy (94.8%). However, spurious words
in example sentences can be a source of noise. Quick
hand tagging of a list of algorithmically-identified
salient collocates appears to be worth the effort, due
to the increased accuracy (95.5%) and minimal cost.

Columns 9 and 10 illustrate the effect of adding
the probabilistic one-sense-per-discourse constraint
to collocation-based models using dictionary entries
as training seeds. Column 9 shows its effectiveness

®The number of words studied has been limited here
by the highly time-consuming constraint that full hand
tagging is necessary for direct comparison with super-
vised training.



as a post-hoc constraint. Although apparently small
in absolute terms, on average this represents a 27%
reduction in error rate. When applied at each itera-
tion, this process reduces the training noise, yielding
the optimal observed accuracy in column 10.
Comparative performance:

Column 5 shows the relative performance of su-
pervised training using the decision list algorithm,
applied to the same data and not using any discourse
information. Unsupervised training using the addi-
tional one-sense-per-discourse constraint frequently
exceeds this value. Column 11 shows the perfor-
mance of Schutze’s unsupervised algorithm applied
to some of these words, trained on a New York Times
News Service corpus. Our algorithm exceeds this ac-
curacy on each word, with an average relative per-
formance of 97% vs. 92%.'!

9 Comparison with Previous Work

This algorithm exhibits a fundamental advantage
over supervised learning algorithms (including Black
(1988), Hearst (1991), Gale et al. (1992), Yarowsky
(1993, 1994), Leacock et al. (1993), Bruce and
Wiebe (1994), and Lehman (1994)), as it does not re-
quire costly hand-tagged training sets. It thrives on
raw, unannotated monolingual corpora — the more
the merrier. Although there is some hope from using
aligned bilingual corpora as training data for super-
vised algorithms (Brown et al., 1991), this approach
suffers from both the limited availability of such cor-
pora, and the frequent failure of bilingual translation
differences to model monolingual sense differences.

The use of dictionary definitions as an optional
seed for the unsupervised algorithm stems from a
long history of dictionary-based approaches, includ-
ing Lesk (1986), Guthrie et al. (1991), Veronis and
Ide (1990), and Slator (1991). Although these ear-
lier approaches have used often sophisticated mea-
sures of overlap with dictionary definitions, they
have not realized the potential for combining the rel-
atively limited seed information in such definitions
with the nearly unlimited co-occurrence information
extractable from text corpora.

Other unsupervised methods have shown great
promise. Dagan and Ttai (1994) have proposed a
method using co-occurrence statistics in indepen-
dent monolingual corpora of two languages to guide
lexical choice in machine translation. Translation
of a Hebrew verb-object pair such as lahtom (sign
or seal) and hoze (contract or treaty) is determined
using the most probable combination of words in
an English monolingual corpus. This work shows
that leveraging bilingual lexicons and monolingual

" This difference is even more striking given that
Schiitze’s data exhibit a higher baseline probability (65%
vs. 55%) for these words, and hence constitute an easier
task.

language models can overcome the need for aligned
bilingual corpora.

Hearst (1991) proposed an early application of
bootstrapping to augment training sets for a su-
pervised sense tagger. She trained her fully super-
vised algorithm on hand-labelled sentences, applied
the result to new data and added the most con-
fidently tagged examples to the training set. Re-
grettably, this algorithm was only described in two
sentences and was not developed further. Our cur-
rent work differs by eliminating the need for hand-
labelled training data entirely and by the joint use of
collocation and discourse constraints to accomplish
this.

Schiitze (1992) has pioneered work in the hier-
archical clustering of word senses. In his disam-
biguation experiments, Schiitze used post-hoc align-
ment of clusters to word senses. Because the top-
level cluster partitions based purely on distributional
information do not necessarily align with standard
sense distinctions, he generated up to 10 sense clus-
ters and manually assigned each to a fixed sense label
(based on the hand-inspection of 10-20 sentences per
cluster). In contrast, our algorithm uses automati-
cally acquired seeds to tie the sense partitions to the
desired standard at the beginning, where it can be
most useful as an anchor and guide.

In addition, Schiitze performs his classifications
by treating documents as a large unordered bag of
words. By doing so he loses many important dis-
tinctions, such as collocational distance, word se-
quence and the existence of predicate-argument rela-
tionships between words. In contrast, our algorithm
models these properties carefully, adding consider-
able discriminating power lost in other relatively im-
poverished models of language.

10 Conclusion

In essence, our algorithm works by harnessing sev-
eral powerful, empirically-observed properties of lan-
guage, namely the strong tendency for words to ex-
hibit only one sense per collocation and per dis-
course. It attempts to derive maximal leverage from
these properties by modeling a rich diversity of collo-
cational relationships. It thus uses more discriminat-
ing information than available to algorithms treating
documents as bags of words, ignoring relative posi-
tion and sequence. Indeed, one of the strengths of
this work is that it is sensitive to a wider range of
language detail than typically captured in statistical
sense-disambiguation algorithms.

Also, for an unsupervised algorithm it works sur-
prisingly well, directly outperforming Schutze’s un-
supervised algorithm 96.7 % to 92.2 %, on a test
of the same 4 words. More impressively, 1t achieves
nearly the same performance as the supervised al-
gorithm given identical training contexts (95.5 %
vs. 96.1 %) , and in some cases actually achieves



superior performance when using the one-sense-per-
discourse constraint (96.5 % vs. 96.1%). This would
indicate that the cost of a large sense-tagged train-
ing corpus may not be necessary to achieve accurate
word-sense disambiguation.
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