
UNSUPERVISED WORD SENSE DISAMBIGUATIONRIVALING SUPERVISED METHODSDavid YarowskyDepartment of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia, PA 19104, USAyarowsky@unagi.cis.upenn.eduAbstractThis paper presents an unsupervised learn-ing algorithm for sense disambiguationthat, when trained on unannotated Englishtext, rivals the performance of supervisedtechniques that require time-consuminghand annotations. The algorithm is basedon two powerful constraints { that wordstend to have one sense per discourse andone sense per collocation { exploited in aniterative bootstrapping procedure. Testedaccuracy exceeds 96%.1 IntroductionThis paper presents an unsupervised algorithm thatcan accurately disambiguate word senses in a large,completely untagged corpus.1 The algorithm avoidsthe need for costly hand-tagged training data by ex-ploiting two powerful properties of human language:1. One sense per collocation:2 Nearby wordsprovide strong and consistent clues to the senseof a target word, conditional on relative dis-tance, order and syntactic relationship.2. One sense per discourse: The sense of a tar-get word is highly consistent within any givendocument.Moreover, language is highly redundant, so thatthe sense of a word is e�ectively overdetermined by(1) and (2) above. The algorithm uses these prop-erties to incrementally identify collocations for tar-get senses of a word, given a few seed collocations1Note that the problem here is sense disambiguation:assigning each instance of a word to established sensede�nitions (such as in a dictionary). This di�ers fromsense induction: using distributional similarity to parti-tion word instances into clusters that may have no rela-tion to standard sense partitions.2Here I use the traditional dictionary de�nition ofcollocation { \appearing in the same location; a juxta-position of words". No idiomatic or non-compositionalinterpretation is implied.

for each sense. This procedure is robust and self-correcting, and exhibits many strengths of super-vised approaches, including sensitivity to word-orderinformation lost in earlier unsupervised algorithms.2 One Sense Per DiscourseThe observation that words strongly tend to exhibitonly one sense in a given discourse or document wasstated and quanti�ed in Gale, Church and Yarowsky(1992). Yet to date, the full power of this propertyhas not been exploited for sense disambiguation.The work reported here is the �rst to take advan-tage of this regularity in conjunction with separatemodels of local context for each word. Importantly,I do not use one-sense-per-discourse as a hard con-straint; it a�ects the classi�cation probabilisticallyand can be overridden when local evidence is strong.In this current work, the one-sense-per-discoursehypothesis was tested on a set of 37,232 examples(hand-tagged over a period of 3 years), the samedata studied in the disambiguation experiments. Forthese words, the table below measures the claim'saccuracy (when the word occurs more than once ina discourse, how often it takes on the majority sensefor the discourse) and applicability (how often theword does occur more than once in a discourse).The one-sense-per-discourse hypothesis:Word Senses Accuracy Applicbltyplant living/factory 99.8 % 72.8 %tank vehicle/contnr 99.6 % 50.5 %poach steal/boil 100.0 % 44.4 %palm tree/hand 99.8 % 38.5 %axes grid/tools 100.0 % 35.5 %sake bene�t/drink 100.0 % 33.7 %bass �sh/music 100.0 % 58.8 %space volume/outer 99.2 % 67.7 %motion legal/physical 99.9 % 49.8 %crane bird/machine 100.0 % 49.1 %Average 99.8 % 50.1 %Clearly, the claim holds with very high reliabilityfor these words, and may be con�dently exploited



as another source of evidence in sense tagging.33 One Sense Per CollocationThe strong tendency for words to exhibit only onesense in a given collocation was observed and quan-ti�ed in (Yarowsky, 1993). This e�ect varies de-pending on the type of collocation. It is strongestfor immediately adjacent collocations, and weakenswith distance. It is much stronger for words in apredicate-argument relationship than for arbitraryassociations at equivalent distance. It is very muchstronger for collocations with content words thanthose with function words.4 In general, the high reli-ability of this behavior (in excess of 97% for adjacentcontent words, for example) makes it an extremelyuseful property for sense disambiguation.A supervised algorithm based on this property isgiven in (Yarowsky, 1994). Using a decision listcontrol structure based on (Rivest, 1987), this al-gorithm integrates a wide diversity of potential ev-idence sources (lemmas, in
ected forms, parts ofspeech and arbitrary word classes) in a wide di-versity of positional relationships (including localand distant collocations, trigram sequences, andpredicate-argument association). The training pro-cedure computes the word-sense probability distri-butions for all such collocations, and orders them bythe log-likelihood ratio Log(Pr(SenseAjCollocationi)Pr(SenseBjCollocationi) ),5with optional steps for interpolation and pruning.New data are classi�ed by using the single mostpredictive piece of disambiguating evidence that ap-pears in the target context. By not combining prob-abilities, this decision-list approach avoids the prob-lematic complexmodeling of statistical dependencies3It is interesting to speculate on the reasons for thisphenomenon. Most of the tendency is statistical: twodistinct arbitrary terms of moderate corpus frequencyare quite unlikely to co-occur in the same discoursewhether they are homographs or not. This is particu-larly true for content words, which exhibit a \bursty"distribution. However, it appears that human writersalso have some active tendency to avoid mixing senseswithin a discourse. In a small study, homograph pairswere observed to co-occur roughly 5 times less often thanarbitrary word pairs of comparable frequency. Regard-less of origin, this phenomenon is strong enough to beof signi�cant practical use as an additional probabilisticdisambiguation constraint.4This latter e�ect is actually a continuous functionconditional on the burstiness of the word (the tendencyof a word to deviate from a constant Poisson distributionin a corpus).5As most ratios involve a 0 for some observed value,smoothing is crucial. The process employed here is sen-sitive to variables including the type of collocation (ad-jacent bigrams or wider context), collocational distance,type of word (content word vs. function word) and theexpected amount of noise in the training data. Detailsare provided in (Yarowsky, to appear).

encountered in other frameworks. The algorithm isespecially well suited for utilizing a large set of highlynon-independent evidence such as found here. Ingeneral, the decision-list algorithm is well suited forthe task of sense disambiguation and will be used asa component of the unsupervised algorithm below.4 Unsupervised Learning AlgorithmWords not only tend to occur in collocations thatreliably indicate their sense, they tend to occur inmultiple such collocations. This provides a mecha-nism for bootstrapping a sense tagger. If one beginswith a small set of seed examples representative oftwo senses of a word, one can incrementally aug-ment these seed examples with additional examplesof each sense, using a combination of the one-sense-per-collocation and one-sense-per-discourse tenden-cies.Although several algorithms can accomplish sim-ilar ends,6 the following approach has the advan-tages of simplicity and the ability to build on anexisting supervised classi�cation algorithm withoutmodi�cation.7 As shown empirically, it also exhibitsconsiderable e�ectiveness.The algorithm will be illustrated by the disam-biguation of 7538 instances of the polysemous wordplant in a previously untagged corpus.STEP 1:In a large corpus, identify all examples of the givenpolysemous word, storing their contexts as lines inan initially untagged training set. For example:Sense Training Examples (Keyword in Context)? ... company said the plant is still operating? Although thousands of plant and animal species? ... zonal distribution of plant life . ...? ... to strain microscopic plant life from the ...? vinyl chloride monomer plant , which is ...? and Golgi apparatus of plant and animal cells? ... computer disk drive plant located in ...? ... divide life into plant and animal kingdom? ... close-up studies of plant life and natural? ... Nissan car and truck plant in Japan is ...? ... keep a manufacturing plant pro�table without? ... molecules found in plant and animal tissue? ... union responses to plant closures . ...? ... animal rather than plant tissues can be? ... many dangers to plant and animal life? company manufacturing plant is in Orlando ...? ... growth of aquatic plant life in water ...? automated manufacturing plant in Fremont ,? ... Animal and plant life are delicately? discovered at a St. Louis plant manufacturing? computer manufacturing plant and adjacent ...? ... the proliferation of plant and animal life? ... ...6Including variants of the EM algorithm (Baum,1972; Dempster et al., 1977), especially as applied inGale, Church and Yarowsky (1994).7Indeed, any supervised classi�cation algorithm thatreturns probabilities with its classi�cations may poten-tially be used here. These include Bayesian classi�ers(Mosteller and Wallace, 1964) and some implementa-tions of neural nets, but not Brill rules (Brill, 1993).



STEP 2:For each possible sense of the word, identify a rel-atively small number of training examples represen-tative of that sense.8 This could be accomplishedby hand tagging a subset of the training sentences.However, I avoid this laborious procedure by iden-tifying a small number of seed collocations repre-sentative of each sense and then tagging all train-ing examples containing the seed collocates with theseed's sense label. The remainder of the examples(typically 85-98%) constitute an untagged residual.Several strategies for identifying seeds that requireminimal or no human participation are discussed inSection 5.In the example below, the words life andmanufac-turing are used as seed collocations for the two majorsenses of plant (labeled A and B respectively). Thispartitions the training set into 82 examples of livingplants (1%), 106 examples of manufacturing plants(1%), and 7350 residual examples (98%).Sense Training Examples (Keyword in Context)A used to strain microscopic plant life from the ...A ... zonal distribution of plant life . ...A close-up studies of plant life and natural ...A too rapid growth of aquatic plant life in water ...A ... the proliferation of plant and animal life ...A establishment phase of the plant virus life cycle ...A ... that divide life into plant and animal kingdomA ... many dangers to plant and animal life ...A mammals . Animal and plant life are delicatelyA beds too salty to support plant life . River ...A heavy seas, damage , and plant life growing on ...A ... ...? ... vinyl chloride monomer plant , which is ...? ... molecules found in plant and animal tissue? ... Nissan car and truck plant in Japan is ...? ... and Golgi apparatus of plant and animal cells ...? ... union responses to plant closures . ...? ... ...? ... ...? ... cell types found in the plant kingdom are ...? ... company said the plant is still operating ...? ... Although thousands of plant and animal species? ... animal rather than plant tissues can be ...? ... computer disk drive plant located in ...B ... ...B automated manufacturing plant in Fremont ...B ... vast manufacturing plant and distribution ...B chemical manufacturing plant , producing viscoseB ... keep a manufacturing plant pro�table withoutB computer manufacturing plant and adjacent ...B discovered at a St. Louis plant manufacturingB ... copper manufacturing plant found that theyB copper wire manufacturing plant , for example ...B 's cement manufacturing plant in Alpena ...B polystyrene manufacturing plant at its Dow ...B company manufacturing plant is in Orlando ...It is useful to visualize the process of seed de-velopment graphically. The following �gure illus-trates this sample initial state. Circled regions arethe training examples that contain either an a or bseed collocate. The bulk of the sample points \?"constitute the untagged residual.8For the purposes of exposition, I will assume a binarysense partition. It is straightforward to extend this to ksenses using k sets of seeds.
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?Figure 1: Sample Initial StateA = sense-a training exampleB = sense-b training example? = currently unclassi�ed training exampleLife = Set of training examples containing the. collocation \life".STEP 3a:Train the supervised classi�cation algorithm onthe sense-a/sense-b seed sets. The decision-list al-gorithm used here (Yarowsky, 1994) identi�es othercollocations that reliably partition the seed trainingdata, ranked by the purity of the distribution. Be-low is an abbreviated example of the decision listtrained on the plant seed data.9Initial decision list for plant (abbreviated)LogL Collocation Sense8.10 plant life ) A7.58 manufacturing plant ) B7.39 life (within �2-10 words) ) A7.20 manufacturing (in �2-10 words) ) B6.27 animal (within �2-10 words) ) A4.70 equipment (within �2-10 words) ) B4.39 employee (within �2-10 words) ) B4.30 assembly plant ) B4.10 plant closure ) B3.52 plant species ) A3.48 automate (within �2-10 words) ) B3.45 microscopic plant ) A...9Note that a given collocate such as life may appearmultiple times in the list in di�erent collocational re-lationships, including left-adjacent, right-adjacent, co-occurrence at other positions in a �k-word window andvarious other syntactic associations. Di�erent positionsoften yield substantially di�erent likelihood ratios and incases such as pesticide plant vs. plant pesticide indicateentirely di�erent classi�cations.



STEP 3b:Apply the resulting classi�er to the entire sam-ple set. Take those members in the residual thatare tagged as sense-a or sense-b with proba-bility above a certain threshold, and add thoseexamples to the growing seed sets. Using thedecision-list algorithm, these additions will containnewly-learned collocations that are reliably indica-tive of the previously-trained seed sets. The acquisi-tion of additional partitioning collocations from co-occurrence with previously-identi�ed ones is illus-trated in the lower portion of Figure 2.STEP 3c:Optionally, the one-sense-per-discourse constraintis then used both to �lter and augment this addition.The details of this process are discussed in Section 7.In brief, if several instances of the polysemous wordin a discourse have already been assigned sense-a,this sense tag may be extended to all examples inthe discourse, conditional on the relative numbersand the probabilities associated with the tagged ex-amples.Labeling previously untagged contextsusing the one-sense-per-discourse propertyChange Disc.in tag Numb. Training Examples (from same discourse)A ! A 724 ... the existence of plant and animal life ...A ! A 724 ... classi�ed as either plant or animal ...? ! A 724 Although bacterial and plant cells are enclosedA ! A 348 ... the life of the plant , producing stemA ! A 348 ... an aspect of plant life , for example? ! A 348 ... tissues ; because plant egg cells have? ! A 348 photosynthesis, and so plant growth is attunedThis augmentation of the training data can oftenform a bridge to new collocations that may not oth-erwise co-occur in the same nearby context with pre-viously identi�ed collocations. Such a bridge to thesense-a collocate \cell" is illustrated graphically inthe upper half of Figure 2.Similarly, the one-sense-per-discourse constraintmay also be used to correct erroneously labeled ex-amples. For example:Error Correction using the one-sense-per-discourse propertyChange Disc.in tag Numb. Training Examples (from same discourse)A ! A 525 contains a varied plant and animal lifeA ! A 525 the most common plant life , the ...A ! A 525 slight within Arctic plant species ...B ! A 525 are protected by plant parts remaining fromSTEP 3d:Repeat Step 3 iteratively. The training sets (e.g.sense-a seeds plus newly added examples) will tendto grow, while the residual will tend to shrink. Addi-tional details aimed at correcting and avoiding mis-classi�cations will be discussed in Section 6.
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Figure 2: Sample Intermediate State(following Steps 3b and 3c)STEP 4:Stop. When the training parameters are held con-stant, the algorithm will converge on a stable resid-ual set.Note that most training examples will exhibit mul-tiple collocations indicative of the same sense (as il-lustrated in Figure 3). The decision list algorithmresolves any con
icts by using only the single mostreliable piece of evidence, not a combination of allmatching collocations. This circumvents many ofthe problems associated with non-independent evi-dence sources.
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STEP 5:The classi�cation procedure learned from the �nalsupervised training step may now be applied to newdata, and used to annotate the original untaggedcorpus with sense tags and probabilities.An abbreviated sample of the �nal decision listfor plant is given below. Note that the original seedwords are no longer at the top of the list. They havebeen displaced by more broadly applicable colloca-tions that better partition the newly learned classes.In cases where there are multiple seeds, it is evenpossible for an original seed for sense-a to becomean indicator for sense-b if the collocate is more com-patible with this second class. Thus the noise intro-duced by a few irrelevant or misleading seed wordsis not fatal. It may be corrected if the majority ofthe seeds forms a coherent collocation space.Final decision list for plant (abbreviated)LogL Collocation Sense10.12 plant growth ) A9.68 car (within �k words) ) B9.64 plant height ) A9.61 union (within �k words) ) B9.54 equipment (within �k words) ) B9.51 assembly plant ) B9.50 nuclear plant ) B9.31 
ower (within �k words) ) A9.24 job (within �k words) ) B9.03 fruit (within �k words) ) A9.02 plant species ) A... ...When this decision list is applied to a new test sen-tence,... the loss of animal and plant species throughextinction ... ,the highest ranking collocation found in the targetcontext (species) is used to classify the example assense-a (a living plant). If available, informationfrom other occurrences of \plant" in the discoursemay override this classi�cation, as described in Sec-tion 7.5 Options for Training SeedsThe algorithm should begin with seed words thataccurately and productively distinguish the possiblesenses. Such seed words can be selected by any ofthe following strategies:� Use words in dictionary de�nitionsExtract seed words from a dictionary's entry forthe target sense. This can be done automati-cally, using words that occur with signi�cantlygreater frequency in the entry relative to theentire dictionary. Words in the entry appearingin the most reliable collocational relationshipswith the target word are given the most weight,based on the criteria given in Yarowsky (1993).

� Use a single de�ning collocate for eachclassRemarkably good performance may be achievedby identifying a single de�ning collocate for eachclass (e.g. bird andmachine for the word crane),and using for seeds only those contexts contain-ing one of these words. WordNet (Miller, 1990)is an automatic source for such de�ning terms.� Label salient corpus collocatesWords that co-occur with the target word inunusually great frequency, especially in certaincollocational relationships, will tend to be reli-able indicators of one of the target word's senses(e.g. 
ock and bulldozer for \crane"). A humanjudge must decide which one, but this can bedone very quickly (typically under 2 minutes fora full list of 30-60 such words). Co-occurrenceanalysis selects collocates that span the spacewith minimal overlap, optimizing the e�orts ofthe human assistant. While not fully automatic,this approach yields rich and highly reliable seedsets with minimal work.6 Escaping from InitialMisclassi�cationsUnlikemany previous bootstrapping approaches, thepresent algorithm can escape from initial misclassi-�cation. Examples added to the the growing seedsets remain there only as long as the probability ofthe classi�cation stays above the threshold. If theirclassi�cation begins to waver because new exampleshave discredited the crucial collocate, they are re-turned to the residual and may later be classi�ed dif-ferently. Thus contexts that are added to the wrongseed set because of a misleading word in a dictionaryde�nition may be (and typically are) correctly re-classi�ed as iterative training proceeds. The redun-dancy of language with respect to collocation makesthe process primarily self-correcting. However, cer-tain strong collocates may become entrenched as in-dicators for the wrong class. We discourage such be-havior in the training algorithm by two techniques:1) incrementally increasing the width of the contextwindow after intermediate convergence (which peri-odically adds new feature values to shake up the sys-tem) and 2) randomly perturbing the class-inclusionthreshold, similar to simulated annealing.7 Using the One-sense-per-discoursePropertyThe algorithm performs well using only local col-locational information, treating each token of thetarget word independently. However, accuracy canbe improved by also exploiting the fact that all oc-currences of a word in the discourse are likely toexhibit the same sense. This property may be uti-lized in two places, either once at the end of Step



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)% Seed Training Options (7) + OSPDSamp. Major Supvsd Two Dict. Top End Each Sch�utzeWord Senses Size Sense Algrtm Words Defn. Colls. only Iter. Algrthmplant living/factory 7538 53.1 97.7 97.1 97.3 97.6 98.3 98.6 92space volume/outer 5745 50.7 93.9 89.1 92.3 93.5 93.3 93.6 90tank vehicle/container 11420 58.2 97.1 94.2 94.6 95.8 96.1 96.5 95motion legal/physical 11968 57.5 98.0 93.5 97.4 97.4 97.8 97.9 92bass �sh/music 1859 56.1 97.8 96.6 97.2 97.7 98.5 98.8 {palm tree/hand 1572 74.9 96.5 93.9 94.7 95.8 95.5 95.9 {poach steal/boil 585 84.6 97.1 96.6 97.2 97.7 98.4 98.5 {axes grid/tools 1344 71.8 95.5 94.0 94.3 94.7 96.8 97.0 {duty tax/obligation 1280 50.0 93.7 90.4 92.1 93.2 93.9 94.1 {drug medicine/narcotic 1380 50.0 93.0 90.4 91.4 92.6 93.3 93.9 {sake bene�t/drink 407 82.8 96.3 59.6 95.8 96.1 96.1 97.5 {crane bird/machine 2145 78.0 96.6 92.3 93.6 94.2 95.4 95.5 {AVG 3936 63.9 96.1 90.6 94.8 95.5 96.1 96.5 92.24 after the algorithm has converged, or in Step 3cafter each iteration.At the end of Step 4, this property is used forerror correction. When a polysemous word such asplant occurs multiple times in a discourse, tokensthat were tagged by the algorithm with low con-�dence using local collocation information may beoverridden by the dominant tag for the discourse.The probability di�erentials necessary for such a re-classi�cation were determined empirically in an earlypilot study. The variables in this decision are the to-tal number of occurrences of plant in the discourse(n), the number of occurrences assigned to the ma-jority and minor senses for the discourse, and thecumulative scores for both (a sum of log-likelihoodratios). If cumulative evidence for the majority senseexceeds that of the minority by a threshold (condi-tional on n), the minority cases are relabeled. Thecase n = 2 does not admit much reclassi�cation be-cause it is unclear which sense is dominant. But forn � 4, all but the most con�dent local classi�cationstend to be overridden by the dominant tag, becauseof the overwhelming strength of the one-sense-per-discourse tendency.The use of this property after each iteration issimilar to the �nal post-hoc application, but helpsprevent initially mistagged collocates from gaining afoothold. The major di�erence is that in discourseswhere there is substantial disagreement concerningwhich is the dominant sense, all instances in thediscourse are returned to the residual rather thanmerely leaving their current tags unchanged. Thishelps improve the purity of the training data.The fundamental limitation of this property iscoverage. As noted in Section 2, half of the exam-ples occur in a discourse where there are no otherinstances of the same word to provide corroboratingevidence for a sense or to protect against misclas-si�cation. There is additional hope for these cases,

however, as such isolated tokens tend to strongly fa-vor a particular sense (the less \bursty" one). Wehave yet to use this additional information.8 EvaluationThe words used in this evaluation were randomlyselected from those previously studied in the litera-ture. They include words where sense di�erences arerealized as di�erences in French translation (drug! drogue/m�edicament, and duty ! devoir/droit),a verb (poach) and words used in Sch�utze's 1992disambiguation experiments (tank, space, motion,plant).10The data were extracted from a 460 million wordcorpus containing news articles, scienti�c abstracts,spoken transcripts, and novels, and almost certainlyconstitute the largest training/testing sets used inthe sense-disambiguation literature.Columns 6-8 illustrate di�erences in seed trainingoptions. Using only two words as seeds does surpris-ingly well (90.6 %). This approach is least success-ful for senses with a complex concept space, whichcannot be adequately represented by single words.Using the salient words of a dictionary de�nition asseeds increases the coverage of the concept space, im-proving accuracy (94.8%). However, spurious wordsin example sentences can be a source of noise. Quickhand tagging of a list of algorithmically-identi�edsalient collocates appears to be worth the e�ort, dueto the increased accuracy (95.5%) and minimal cost.Columns 9 and 10 illustrate the e�ect of addingthe probabilistic one-sense-per-discourse constraintto collocation-based models using dictionary entriesas training seeds. Column 9 shows its e�ectiveness10The number of words studied has been limited hereby the highly time-consuming constraint that full handtagging is necessary for direct comparison with super-vised training.



as a post-hoc constraint. Although apparently smallin absolute terms, on average this represents a 27%reduction in error rate. When applied at each itera-tion, this process reduces the training noise, yieldingthe optimal observed accuracy in column 10.Comparative performance:Column 5 shows the relative performance of su-pervised training using the decision list algorithm,applied to the same data and not using any discourseinformation. Unsupervised training using the addi-tional one-sense-per-discourse constraint frequentlyexceeds this value. Column 11 shows the perfor-mance of Sch�utze's unsupervised algorithm appliedto some of these words, trained on a New York TimesNews Service corpus. Our algorithm exceeds this ac-curacy on each word, with an average relative per-formance of 97% vs. 92%.119 Comparison with Previous WorkThis algorithm exhibits a fundamental advantageover supervised learning algorithms (including Black(1988), Hearst (1991), Gale et al. (1992), Yarowsky(1993, 1994), Leacock et al. (1993), Bruce andWiebe (1994), and Lehman (1994)), as it does not re-quire costly hand-tagged training sets. It thrives onraw, unannotated monolingual corpora { the morethe merrier. Although there is some hope from usingaligned bilingual corpora as training data for super-vised algorithms (Brown et al., 1991), this approachsu�ers from both the limited availability of such cor-pora, and the frequent failure of bilingual translationdi�erences to model monolingual sense di�erences.The use of dictionary de�nitions as an optionalseed for the unsupervised algorithm stems from along history of dictionary-based approaches, includ-ing Lesk (1986), Guthrie et al. (1991), Veronis andIde (1990), and Slator (1991). Although these ear-lier approaches have used often sophisticated mea-sures of overlap with dictionary de�nitions, theyhave not realized the potential for combining the rel-atively limited seed information in such de�nitionswith the nearly unlimited co-occurrence informationextractable from text corpora.Other unsupervised methods have shown greatpromise. Dagan and Itai (1994) have proposed amethod using co-occurrence statistics in indepen-dent monolingual corpora of two languages to guidelexical choice in machine translation. Translationof a Hebrew verb-object pair such as lah.tom (signor seal) and h.oze (contract or treaty) is determinedusing the most probable combination of words inan English monolingual corpus. This work showsthat leveraging bilingual lexicons and monolingual11This di�erence is even more striking given thatSch�utze's data exhibit a higher baseline probability (65%vs. 55%) for these words, and hence constitute an easiertask.

language models can overcome the need for alignedbilingual corpora.Hearst (1991) proposed an early application ofbootstrapping to augment training sets for a su-pervised sense tagger. She trained her fully super-vised algorithm on hand-labelled sentences, appliedthe result to new data and added the most con-�dently tagged examples to the training set. Re-grettably, this algorithm was only described in twosentences and was not developed further. Our cur-rent work di�ers by eliminating the need for hand-labelled training data entirely and by the joint use ofcollocation and discourse constraints to accomplishthis.Sch�utze (1992) has pioneered work in the hier-archical clustering of word senses. In his disam-biguation experiments, Sch�utze used post-hoc align-ment of clusters to word senses. Because the top-level cluster partitions based purely on distributionalinformation do not necessarily align with standardsense distinctions, he generated up to 10 sense clus-ters and manually assigned each to a �xed sense label(based on the hand-inspection of 10-20 sentences percluster). In contrast, our algorithm uses automati-cally acquired seeds to tie the sense partitions to thedesired standard at the beginning, where it can bemost useful as an anchor and guide.In addition, Sch�utze performs his classi�cationsby treating documents as a large unordered bag ofwords. By doing so he loses many important dis-tinctions, such as collocational distance, word se-quence and the existence of predicate-argument rela-tionships between words. In contrast, our algorithmmodels these properties carefully, adding consider-able discriminating power lost in other relatively im-poverished models of language.10 ConclusionIn essence, our algorithm works by harnessing sev-eral powerful, empirically-observed properties of lan-guage, namely the strong tendency for words to ex-hibit only one sense per collocation and per dis-course. It attempts to derive maximal leverage fromthese properties by modeling a rich diversity of collo-cational relationships. It thus uses more discriminat-ing information than available to algorithms treatingdocuments as bags of words, ignoring relative posi-tion and sequence. Indeed, one of the strengths ofthis work is that it is sensitive to a wider range oflanguage detail than typically captured in statisticalsense-disambiguation algorithms.Also, for an unsupervised algorithm it works sur-prisingly well, directly outperforming Sch�utze's un-supervised algorithm 96.7 % to 92.2 %, on a testof the same 4 words. More impressively, it achievesnearly the same performance as the supervised al-gorithm given identical training contexts (95.5 %vs. 96.1 %) , and in some cases actually achieves
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